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1. Introduction

Portfolio credit derivatives have attracted considerable attention over the last decade among insti-
tutional investors. The difficulty in the valuation of such financial derivatives is the modeling of the
default dependence among them. One of the most popular methods for modeling credit risk is the
reduced-form approach, in which the time of default of a firm is defined as the first jump time of a
point process.

There are two major types of reduced form models for describing default dependence, namely
bottom-up models and top-down models. In the former approach, one focuses on modeling default
intensities of individual reference entities and their aggregation to form a portfolio default intensity.
Some works on bottom-up models include Duffie and Gârleanu (2001), Jarrow and Yu (2001) and
Giesecke and Goldberg (2004). In the latter approach, one concerns modelling default at portfolio
level. A default intensity for the whole portfolio is modelled without reference to the constituent
names. Some procedures such as random thinning can be used to recover the default intensities of
the individual entities. Some works on top-down models include Brigo et al. (2010), and Ding et al.
(2009). We focus on bottom-up models.

There exist four major approaches to introduce default correlation within the reduced-form frame-
work: the conditionally independent approach, the copula approach, the default contagion models,
and the common shock models. In the conditionally independent default models, one may set the de-
fault intensities of the firms in the portfolio to be driven by a common set of macro-economic factors.
Therefore, conditional on the realization of the macro-economic state variables, the default times are
mutually independent; see, for example, Duffie and Gârleanu (2001) and Graziano and Rogers (2009).
In the copula models, the dependence structure is linked through a copula function; see, for example,
Schonbucher and Schubert (2001) and Hull and White (2004). Default contagion is another approach
to model the default correlation. The contagion models study the direct interaction of firms in which
the default probability of one firm may change upon defaults of some other firms in the portfolio; see,
for example, Davis and Lo (2001) and Dong et al. (2016). The common shock models are based on
the idea that a firm’s default is driven by exogenous events, for example, policy events, natural catas-
trophes events, etc. Therefore, simultaneous defaults may occur under the common shock models;
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see, for example, Giesecke (2003), Brigo et al. (2010), and Bielecki et al. (2012). This paper focuses
on a conditionally independent approach.

The challenge in the valuation of portfolio credit derivatives using a conditionally independent
approach is to describe the modelling of the default intensity or hazard process in the single firm case.
Affine processes are usually used to model the default intensity, since they allow for explicit solutions
to many important quantities in derivative pricing. See for example, Duffie et al. (2003). However,
empirical studies point to the existence of different regimes in the default risk valuation, see, for
example, Davies (2004) and Alexander and Kaeck (2008). Credit derivatives are long term instruments
and thus it is very important to develop more appropriate models for valuation and risk management
of credit products, which can take into account changes of market regimes or environments due to the
crisis.

Markov regime-switching models have been widely used in different branches of modern financial
economics to capture changes in market regimes. For example, see Buffington and Elliott (2002), Shen
and Siu (2013), Elliott and Siu (2011) and others. Regime switches are often interpreted as structural
changes in macro-economic conditions and in different stages of business cycles. Intuitively, default
risk typically declines during economic expansion because strong earnings keep overall defaults rates
low. Default risk increases during economic recession because earnings deteriorate, making it more
difficult to repay loans or make bond payments. See for example, the U.S. subcrisis initially lead
to the bankruptcy of several major subprime mortgage lenders and the decrease in the firm values
and stock prices of some of the major lenders, including Countrywide Financial, Washington Mutual,
Citigroup, and others. Then this crisis quickly became a global crisis and had significant impact on
the values of credit derivatives not directly related to the mortgage financial institutions. Therefore,
the subcrisis is the disaster to the whole people and it is reasonable to assume that most companies
are more likely to default in the financial crisis. This motivates the quest for regime-switching models
for valuation and risk management of credit products, which can incorporate the change in regimes
of credit markets.

Recently, by an empirical analysis of the corporate bond market over the course of the last 150
years, Giesecke et al. (2011) point out that there exist three regimes, associated with high, middle,
and low default risk. They also study the relationship between the default risk and the financial and
macroeconomic variables by using the regime-switching model. However, they do not consider the
modelling of the default dependence within the regime-switching framework. Motivated by them, we
shall investigate a regime-switching model for correlated defaults and the pricing of the kth-to-default
basket swap. Instead of studying the determinants of corporate default risk within a regime-switching
framework in Giesecke et al. (2011), we directly model the hazard processes by some regime-switching
processes, which incorporate both macroeconomic risks and firm-specific jump risks, so that we can
derive some closed-form formulas for the portfolio credit derivatives.

Note that, within the reduced-form framework, Dong et al. (2014) consider a common shock model,
in which the default intensities are modelled by a multivariate regime-switching process. Dong et al.
(2016) investigate a default contagion model, where the default intensities are also described by some
regime-switching processes. However, in Dong et al. (2014) and Dong et al. (2016), only the model
parameters may switch whenever transitions in the Markov chain occur and therefore the hazard
processes are absolutely continuous. Intuitively, if a Markov chain jumps from a good economic state
to a bad economic state, this may cause the conditional default intensity to increase. This is because
macro-economic risks are usually structural in nature. In addition to a jump component caused by
exogenous factors, we consider a Markov regime-switching hazard process which can incorporate jumps
due to structural changes in economic conditions into the dynamics of hazard process.

In this paper, we use a conditionally independent default approach different from those in Dong et
al. (2014) and Dong et al. (2016), who adopt a common shock and a contagion model, respectively.
The hazard processes we consider are modelled by some regime-switching processes, which are not
absolutely continuous. The difference between our model and some existing regime-switching reduced-
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form models (such as, Dong et al. (2014) and Dong et al. (2016) is that only the model parameters
can switch according to the Markov chain in the existing models, but in our hazard model, not only
the model parameters may switch but also the hazard process may jump whenever transitions in the
Markov chain occur. Therefore, in our proposed model, the jumps of the Markov chain may also trigger
defaults, while defaults could not occur when the Markov chain transits from one state to another
state in Dong et al. (2014) and Dong et al. (2016). Since the conditional default intensities of all the
names in the portfolio go up when the economic state shifts from economic growth to recession in our
model, we can increase the chances of observing a larger number of defaults in the portfolio during
the economic depression. Therefore, the proposed hazard processes can well capture the clustering
phenomena in correlated defaults.

This paper aims at providing a flexible and tractable model for correlated defaults which take into
account the changes in market regimes due to financial crises. Under the proposed model, we can give
analytic formulas for the CDS spreads. The rest of the paper is organized as follows. In section 2, we
introduce a conditionally independent default model, in which the hazard processes are described by
some dependent regime-switching pure jump processes. Section 3 derives the joint Laplace transform of
the hazard processes. Based on the joint Laplace transform, we obtain the joint survival distributions.
Section 4 gives the closed-form formulas for the CDS spread and the spread of the kth-to-default
basket swap. Section 5 presents some numerical results. Finally, Section 6 concludes the paper.

2. The model

In this section, we model the dependent hazard processes within the reduced-form framework under
a Markov environment. Consider a continuous-time model with a finite time horizon T = [0, T ∗],
where T ∗ < ∞. Let (Ω,F ,F, P ) be a filtered complete probability space, where P is the risk neutral
measure and F := {Ft|t ∈ T } is a filtration satisfying the usual conditions of right continuity and
completeness. Throughout the paper, it is assumed that all random variables are well defined on this
probability space and FT∗−measurable.

Assume that there exists a homogeneous Markov chain X := {Xt|t ∈ T } with generator Q = (qij),
describing the macro-economic conditions. The state space of X can be taken to be, without loss
of generality, the set of unit vectors {e1, e2, · · · , eN}, where ei = (0, · · · , 0, 1, 0, · · · , 0)∗ ∈ RN with
the symbol ∗ denoting the transpose of a vector or a matrix. Let HX := {HX

t |t ∈ T } is a right-
continuous, P -complete, natural filtration generated by the Markov chain X. Elliott et al. (1994)
provide the following semi-martingale decomposition for Xt:

dXt = Q∗Xtdt+ dMt, (2.1)

where Mt is an (HX , P )−martingale.

Let ⟨., .⟩ denote a scalar product in RN , that is, for any x,y ∈ RN , ⟨x,y⟩ =
∑N

i=1 xiyi. For each
k, j = 1, 2, · · · , N, and j ̸= k, let Jjk := {Jjk(t)|t ∈ T } denote the number of jumps by time t from
state ej to state ek. That is,

Jjk(t) =
∑

0<s≤t

⟨Xs−, ej⟩⟨Xs, ek⟩

=

∫ t

0

⟨Xs−, ej⟩⟨dXs, ek⟩

=

∫ t

0

⟨Xs−, ej⟩⟨Q∗Xs, ek⟩ds+
∫ t

0

⟨Xs−, ej⟩⟨dMs, ek⟩.

Then, we have

Jjk(t) := Jjk(t)−
∫ t

0

⟨Xs−, ej⟩⟨Q∗Xs, ek⟩ds

= Jjk(t)− qjk

∫ t

0

⟨Xs−, ej⟩ds,
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is an (HX , P )−martingale.

Assume that the discount factor is given by D(0, t) = exp{−
∫ t

0
rsds}, where the interest rate rt has

the form

rt = r(Xt), . (2.2)

Here r(Xt) = ⟨r, Xt⟩, where r = (r1, r2, · · · , rN )∗ ∈ RN with ri > 0, for each i = 1, 2, · · · , N.

Consider a portfolio of m credit-risky assets. For each i = 1, 2, · · · ,m, let τi denote the default time
of the name i. Define

Di
t = 1{τi≤t}, i = 1, 2, · · · ,m

and denote by the filtration G =: {Gt|t ∈ T } where Gt = G1
t ∨ G2

t ∨ · · · Gm
t , with Gi

t = σ(Di
s, s ≤ t).

Assume that F is the enlarged filtration H ∨G where H := {Ht|t ∈ T } is the filtration related to the
underlying risk factors. Let us denote by

Si
t = P (τi > t|Ht)

the survival process of τi with respect to a filtration H. We postulate that Si
0 = 1 and Si

t > 0 for every
t > 0. Then for each i = 1, 2, · · · ,m, the H-hazard process Λi := {Λi(t)|t ∈ T }, is defined by

Λi
t = − log(Si

t), t > 0.

Now we begin to describe the hazard processes for the default times. For each i = 1, 2, · · · ,m, the
evolution of the hazard process Λi is governed by the following process:

Λi
t =

∫ t

0

λi
sds+

N∑
j=1

N∑
l=1,l ̸=j

wi
jlJjl(t), t ∈ T , (2.3)

where the constants wi
jl ̸= 0, for j, l = 1, 2, · · · , N, l ̸= j, and the process λi := {λi

t|t ∈ T } is modelled
by:

λi
t = λi(Xt) +

∫ t

0

e−ai(t−s)dJ i
s
.
= λi(Xt) + Li

t, t ∈ T . (2.4)

Here, λi(Xt) = ⟨λi, Xt⟩, where λi = (λi1, λi2, · · · , λiN )∗ ∈ RN with λij > 0 for i = 1, 2, · · · ,m,j =
1, · · · , N ; ai > 0 is a constant; and

J i
t =

Ni
t+N0

t∑
j=1

Y i
j

is a regime-switching compound Poisson process, where N l
t is a regime-switching Poisson process with

intensity µl(s) = ⟨µl, Xs⟩ for a positive vector µl = (µ1
l , · · · , µN

l )∗, for each l = 0, 1, 2, · · · ,m; Y i
n is

the size of the nth jump. Given ℑX
t , it is assumed that N0

t , N
1
t · · · , Nm

t are mutually independent,
and that {Y 1

j , j = 1, 2, · · · }, · · · , {Y m
j , j = 1, 2, · · · } are mutually independent and independent of

N0(t), · · · , Nm(t). Furthermore, given the path of the Markov chain X, we assume that for each
i = 1, 2, · · · ,m, the jump sizes Y i

j , j = 1, 2, · · · have a common conditional density f i
t concentrated

on (0,∞), where f i
t (.) = ⟨f i(.), Xt⟩, for a vector f i(.) = (f i1(.), · · · , f iN (.))∗.

Remark 2.1 Although λi
t in (2.3) jumps upward for each i = 1, 2, · · · ,m, Λi

t can take negative
values with positive probability since the constants wi

jl, j, l = 1, · · · , N, j ̸= l, i = 1, · · · ,m are not

necessarily non-negative. However, in practical applications, the absolute value of
N∑
j=1

N∑
l=1,l ̸=j

wi
jlJjl(t)

is usually much smaller than the value of
∫ t

0
λi
sds, so that the probability Λi

t takes negative values can
be considered negligible. This is because the values of wi

jl, j, l = 1, · · · , N, j ̸= l, i = 1, · · · ,m are small,

4



and a lot of empirical results show that the regime with low-default rate is usually very persistent. See
for example, the empirical results presented in Giesecke et al. (2011) show that being in the regime
with mid-default rate is an event that occurs roughly every decade, on average, while being in the
regime with high-default rate occurs about every fifty years, on average.

Note that, for each i = 1, · · · ,m, Li = {Li
t| ∈ T } is a mean-reverting regime-switching Markov

process, and it solves the stochastic differential equation

dLi
t = −aiLi

tdt+ dJ i
t , Li

0 = 0. (2.5)

If there is no regime switching, then Li
t follows a shot noise process. In the literature, the shot noise

processes are good tools for describing the arrival intensities as they allow for explicit solutions to
many important quantities in derivative pricing. For example, Gaspar and Schmidt (2010) consider a
multivariate default model driven by the shot noise processes and show that the shot noise processes
can describe historical data very well and give a better fit in calibration than the affine jump-diffusion
models proposed by Duffie and Gârleanu (2001). As is pointed out by Dassios and Jang (2003),
the shot noise process measures the frequency, magnitude and time period needed to go back to the
previous level of intensity immediately after shock events occur. This paper extends the shot noise
process to a regime-switching version. Intuitively, the hazard process of a firm depends on a firm
specific term and some common factors. The processes λ1

t , · · · , λm
t given by (2.4) which are driven

by a multivariate regime-switching shot noise process with common jumps capture the impacts of
idiosyncratic and common factors on the hazard processes.

We can see that the hazard processes jump whenever a transition of the Markov chain occurs.
Intuitively, if the chain jumps from a state of economic growth to a state of economic recession, this
systematic risk may cause the conditional default intensity of all the firms to go up. Therefore, the
default dependence modelled by (2.3)-(2.4) stems from the Markov chain X and the common jumps
in Li

t, i = 1, 2, · · · ,m.

Let HLi

:= {HLi

t |t ∈ T } be the right continuous and P−complete, natural filtration generated by

Li, for each i = 1, 2, · · · ,m. Then for each t ∈ T , Ht is the enlarged σ−field HX
t ∨HL1

t ∨ · · · ∨ HLm

t .

Assume the default times τ1, τ2, · · · , τm are mutually conditionally independent given H, that is, for
any 0 < ti ≤ T, i = 1, 2, · · · ,m,

P (τ1 > t1, τ2 > t2, · · · , τm > tm|HT ) =
m∏
i=1

P (τi > ti|HT )

=
m∏
i=1

e−Λi
ti . (2.6)

Therefore, in order to derive the joint survival probability, we shall give the conditional joint Laplace
transform of Λi

t, i = 1, · · · ,m.

3. Laplace transforms and survival distributions

In this section, we shall derive explicit formulas for the marginal and joint survival probabilities.

For ci ≥ 0, i = 0, 1, · · · ,m, let

V (t, T ) = E

[
e
−c0

∫ T
t

rsds−
m∑

i=1

ci(Λi
T−Λi

t)
XT |Ht

]
,

= E

e− ∫ T
t

(c0r(Xs)+
m∑

i=1
ci(λi(Xs)+Li

s))ds−
N∑

j=1

N∑
k=1,k ̸=j

m∑
i=1

ciwi
jk(Jjk(T )−Jjk(t))

XT |Ht

 .
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Since (Xt, L
1
t · · · , Lm

t )∗ is an (m+ 1)−dimensional Markov process with respect to Ht, we have

V (t, T ) = E

[
e
−c0

∫ T
t

rsds−
m∑

i=1

ci(Λi
T−Λi

t)
XT |Li

t, i = 1, · · · ,m,Xt

]
=: θ(t, T, L1

t , · · · , Lm
t , Xt).

Write
θi = θ(t, T, L1

t , · · · , Lm
t , ei), i = 1, 2, · · · , N,

and write
θ = (θ1, θ2, · · · , θN )∗ ∈ RN .

The following result gives the explicit expression for θ(t, T, L1
t , · · · , Lm

t , Xt).

To make the following derivations mathematically rigorous, we shall impose the following integra-
bility conditions:

1. E

[
|e

−c0
∫ T
0

rsds−
m∑

i=1

ciΛi
T

XT |

]
< ∞;

2. E[θ(t, T, l1, · · · , li + Y i, · · · , lm, x)− θt] < ∞ for each i = 1, 2, · · · ,m;

3.E[θ(t, T, l1 + Y 1, · · · , li + Y i, · · · , lm + Y m, x)− θt] < ∞;

4. E

[∫ T

0
e
−c0

∫ t
0
rsds−

m∑
i=1

ci(Λi
T−Λi

t)||θt||2dt

]
< ∞ with the norm ||.|| on RN defined by

||ζ|| = ζ∗[diag(QXt)− diag(Xt)Q
∗ −Qdiag(Xt)]ζ,

where diag(χ) is a diagonal matrix with diagonal entries given by the vector χ.

Theorem 3.1. For ci ≥ 0, i = 0, 1, · · · ,m, we have

V (t, T ) = e
−

m∑
i=1

Bi(t,T )Li
t⟨Ψ1(t, T ), Xt⟩, (3.1)

where Bi(t, T ) = −ci(1 − e−ai(T−t))/ai, for i = 1, · · · ,m, and Ψ1(t, T ) is the fundamental matrix
solution of

dΨ1(t, T )

dt
+ Q̃(t)Ψ1(t, T ) = 0,Ψ1(T, T ) = I.

Here I is an N ×N identity matrix and Q̃(t) = (q̃ij(t)) is an N ×N matrix:

q̃ij(t) = qije
−

m∑
l=1

clwl
ij

, i ̸= j,

= qii +Gi
t − c0ri −

m∑
l=1

clλli, i = j,

with

Gi
t =

m∑
l=1

µi
l(

∫ ∞

0

eB
l(t,T )xf li(x)dx− 1) + µi

0(

m∏
l=1

∫ ∞

0

eB
l(t,T )xf li(x)dx− 1).

Furthermore,

E

[
e
−c0

∫ T
t

rsds−
m∑

i=1

ci(Λi
T−Λi

t)|Ht

]
= e

−
m∑

i=1

Bi(t,T )Li
t⟨Ψ1(t, T )1, Xt⟩, , (3.2)
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where 1 = (1, 1, · · · , 1)∗ ∈ RN .

Proof. We use the martingale approach to derive (3.1). For notational convenience, denote by
θt = θ(t, T, L1

t , · · · , Lm
t , Xt). Consider the function

V (t, T ) = Utθt,

where

Ut = exp(−
∫ t

0

c0r(Xs)ds−
m∑
i=1

ciΛi
t).

Applying Itô’s differentiation rule to V (t, T ) yields

dV (t, T ) = Ut−dθt + θt−dUt + d[U, θ]t

= Ut(
∂

∂t
−

m∑
i=1

aiLi
t

∂

∂li
)θtdt+ Ut−

m∑
i=1

((
θt − θ(t, T, L1

t , · · · , Li
t− , · · · , L

m
t , Xt

))
dN i

t

+ Ut−

(
(θt − θ(t, T, L1

t− , · · · , L
i
t− , · · · , L

m
t− , Xt)

)
dN0

t

+ Ut−⟨θ, Q∗Xt⟩dt+ Ut−⟨θ, dMt⟩ −
(
c0r(Xs) +

m∑
i=1

ci(λi(Xs) + Li
s)
)
Ut−θtdt

+ θt−Ut−

∑
j ̸=k

1{Xt−=ej ,Xt=ek}(e
−

m∑
i=1

ciwi
jk − 1)

+ Ut−

∑
j ̸=k

1{Xt−=ej ,Xt=ek}(e
−

m∑
i=1

ciwi
jk − 1)(θt − θt−),

where {[U, θ]t|t ∈ T } is the optional covariation of the processes {Ut|t ∈ T } and {θt|t ∈ T }.

As is pointed out in Remark 2.1, in practical applications, for each i = 1, 2, · · · ,m, the probability

Λi
t takes negative values can be considered negligible since the absolute value of

N∑
j=1

N∑
l=1,l ̸=j

wi
jlJjl(t)

is usually much smaller than the value of
∫ t

0
λi
sds. Therefore, |V (t, T )| ≤ 1 and then V (t, T ) is a

bounded (H, P )−martingale. Furthermore, from the above integrability conditions, we can conclude
that the bounded variation terms, which are not martingales, must sum to zero:( ∂

∂t
−

m∑
i=1

aili
∂

∂li
−

(
⟨

m∑
i=1

ciλi + c0r, x⟩+
m∑
i=1

cili
))

θ(t, T, l1, · · · , lm, x)

+

m∑
i=1

⟨µi, x⟩E[θ(t, T, l1, · · · , li + Y i, · · · , lm, x)− θt]

+⟨µ0, x⟩E[θ(t, T, l1 + Y 1, · · · , li + Y i, · · · , lm + Y m, x)− θt]

+⟨θ, Q∗x⟩+
N∑
j=1

1{Xt=ej}
∑
j ̸=k

qjk(e
−

m∑
i=1

ciw
i
jk − 1)θ(t, T, l1, · · · , lm, k) = 0. (3.3)

Due to the affine structure of Li
t, motivated by Duffie et al. (2003), we try the solution

θ(t, T, l1, · · · , lm, x) = e

m∑
i=1

Bi(t,T )li

C(t, T, x), (3.4)

where the terminal conditions are given by

Bi(T, T ) = 0, C(T, T, x) = x.

7



Write
C(t, T ) = (C(t, T, e1), · · · , C(t, T, eN ))∗.

Substituting the solution for θ given by (3.4) into (3.3) gives

∂Bi

∂t
− aiBi(t, T )− ci = 0, Bi(T, T ) = 0, (3.5)

and

∂C(t, T, ej)

∂t
+ C(t, T, ej)(qjj − c0rj −

m∑
i=1

ciλij + µj
0(

m∏
i=1

∫ ∞

0

eBi(t,T )yif ij(yi)dyi − 1)

+
m∑
i=1

∫ ∞

0

µj
i (e

Bi(t,T )yi − 1)f ij(yi)dyi) +
N∑

k=1,k ̸=j

qjk(e
−

m∑
i=1

ciwi
jk − 1)C(t, T, ek) = 0,

(3.6)

with
C(T, T, ej) = ej , j = 1, 2, · · · , N.

From (3.5), it is easy to obtain that

B(t, T ) = −ci(1− e−ai(T−t))/ai.

It remains to prove that there exists a unique solution of (3.6). We can rewrite (3.6) as

∂C(t, T )

∂t
+ Q̃(t)C(t, T ) = 0,C(T, T ) = I.

Let Ψ(t, T ) denote the fundamental matrix solution of

dΨ(t, T )

dt
+ Q̃(t)Ψ(t, T ) = 0,Ψ(T, T ) = I. (3.7)

Since Q̃(t) is continuous, there exists a unique solution of (3.7) over the finite time interval T . Hence,

C(t, T, x) = ⟨Ψ(t, T ), Xt⟩.

Eq. (3.2) holds since

E

[
e
−

∫ T
t

c0r(Xs)ds−
m∑

i=1

ci(Λi
T−Λi

t)|Ht

]

= E

[
e
−

∫ T
t

c0r(Xs)ds−
m∑

i=1

ci(Λi
T−Λi

t)⟨XT ,1⟩|Ht

]
.

Remark 3.1 If we let c0 = 1 and ci = 0 for each i = 1, · · · ,m in Theorem 3.1, then we have

E[e−
∫ T
t

rsdsXT |Xt] = ⟨e(Q−diag(r))(T−t), Xt⟩, (3.8)

and

E[e−
∫ T
t

rsds|Xt] = ⟨e(Q−diag(r))(T−t)1, Xt⟩, (3.9)
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where diag(r) is a diagonal matrix with diagonal entries given by the vector r. (3.8) and (3.9) are the
same as the results given by LemmaA1 in Buffington and Elliott (2002).2

The following two results are direct consequences of Theorem 3.1.

Corollary 3.1. For each l = 1, 2, · · · ,m and any 0 < t ≤ T, the survival distribution for τl is given
by

P (τl > t) = ⟨Ψl
2(0, t)1, X0⟩, (3.10)

where Ψl
2(s, t) is the fundamental matrix solution of

dΨl
2(s, t)

ds
+Q

l
(s)Ψl

2(s, t) = 0,Ψl
2(t, t) = I.

Here Q
l
(s) is an N ×N matrix:

qlij(s) = qije
−wl

ij , i ̸= j,

= qii +G
li

s − λli, i = j,

where

G
li

s = (µi
l + µi

0)(

∫ ∞

0

eB
l
(s,t)xf li(x)dx− 1), (3.11)

with B
l
(s, t) = −1−e−al(t−s)

al .

Denote by S the collection of all the nonempty subsets of the set {1, · · · , n}. The following result
gives explicit formulas for the joint survival distributions of the default times.

Corollary 3.2. For each s ∈ S and any 0 < t ≤ T, we have

P (
∩
j∈s

{τj > t}) = ⟨Ψs
3(0, t)1, X0⟩, (3.12)

where Ψs
3(v, t) is the fundamental matrix solution of

dΨs
3(v, t)

dv
+Q

s
(v)Ψs

3(v, t) = 0,Ψs
3(t, t) = I.

Here Q
s
(v) is an N ×N matrix:

qsij(v) = qije
−

∑
l∈s

wl
ij

, i ̸= j,

= qii + G̃si
v −

∑
l∈s

λli, i = j,

where

G̃si
v =

∑
k∈s

µi
k(

∫ ∞

0

eB
k
(v,t)xfki(x)dx− 1) + µi

0(
∏
k∈s

∫ ∞

0

eB
k
(v,t)xfki(x)dx− 1), (3.13)

with B
k
(v, t) given in Corollary 3.1.

In particular, for any 0 < t ≤ T, the joint survival distribution for τ1, · · · , τm is given by

P (τ1 > t, τ2 > t, · · · , τm > t) = ⟨Ψ4(0, t)1, X0⟩, (3.14)
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where Ψ4(s, t) is the fundamental matrix solution of

dΨ4(v, t)

dv
+ Q̂(v)Ψ4(v, t) = 0,Ψ4(t, t) = I.

Here Q̂(v) is an N ×N matrix:

q̂ij(v) = qije
−

m∑
l=1

wl
ij

, i ̸= j,

= qii + Ĝi
v −

m∑
l=1

λli, i = j,

with

Ĝi
v =

m∑
k=1

µi
k(

∫ ∞

0

eB
k
(v,t)xfki(x)dx− 1) + µi

0(

m∏
k=1

∫ ∞

0

eB
k
(v,t)xfki(x)dx− 1). (3.15)

4. CDS and kth-to-default basket swap

In this section, we will investigate the pricing of the fair spreads of a single-name credit default swap
and a kth-to-default basket swap.

4.1. Single-name credit default swap

In this subsection, we shall give the formula for the spread of a single CDS contract under our
proposed regime-switching hazard process model.

A credit default swap (CDS) is a financial swap agreement between the buyer of the default protection
on a reference risky entity and the seller of the default protection. The protection seller receives fixed
periodic payments (CDS premium) from the protection buyer, in return for compensating the buyer’s
losses on the reference entity when a credit event occurs. This subsection focuses on valuing a single-
name CDS contract on name i. Assume the default time of name i has the hazard process Λi

t modelled
by (2.3). Consider a unit notional with the maturity T and a constant recovery R. The protection
buyer pays an annualized premium to the protection seller before maturity T at specified time points
0 = t0 < t1 < · · · < tM ≤ T, with △ti = ti − ti−1. As soon as name i has defaulted, the protection
buyer stops further premium payments and the protection seller is committed to paying the insurance
buyer the default compensation 1−R, where R is the constant recovery rate.

We first describe the cash flows of a CDS on name i. The cash flows of a CDS are as follows:

Default leg: the protection seller covers the credit losses 1−R as soon as name i has defaulted;

Premium leg: the protection buyer pays si∆tk to the seller, at each date tk, k = 1, · · · ,M until
maturity or until name i defaults before maturity.

Then, the CDS spread on name i, si, is determined so that the discounted payoff of the two legs
are equal when the contract is settled at the initial time. More precisely, the CDS spread si should
satisfy

siE[

M∑
l=1

e−
∫ tl
0 rudu△tl1{τi>tl}] = (1−R)E[

M∑
l=1

e−
∫ tl
0 rudu1{tl−1<τi≤tl}].

10



Hence,

si =

(1−R)E[
M∑
l=1

e−
∫ tl
0 rudu1{tl−1<τi≤tl}]

E[
M∑
l=1

e−
∫ tl
0 rudu△tl1{τi>tl}]

. (4.1)

Proposition 4.1 The spread of the single-name CDS on name i, si, is given by

si =

M∑
l=1

(P̂ i
1l − P̂ i

2l)

M∑
l=1

△tlP̂ i
2l

, (4.2)

where

P̂ i
1l = ⟨Ψ̂i(0, tl−1)(e

(Q−diag(r))∆tl1), X0⟩,

and

P̂ i
2l = ⟨Ψ̂i(0, tl)1, X0⟩.

Here Ψ̂i(u, t) is the fundamental matrix solution of

dΨ̂i(u, t)

du
+Oi(u)Ψ̂i(u, t) = 0, Ψ̂i(t, t) = I. (4.3)

where Oi(u) = (oikj(u)) is an N ×N matrix:

oikj(u) = qkle
−wi

kj , k ̸= j,

= qkk +G
ik

u − rk − λik, k = j,

with G
ik

u defined in (3.11).

Proof. We first calculate the discounted payoff. Using the “tower property” of conditional expec-
tation, we have

E[e−
∫ tl
0 rudu1{tl−1<τi≤tl}] = E[e−

∫ tl
0 ruduP (tl−1 < τi ≤ tl|Htl)]

=̂ (P̂ i
1l − P̂ i

2l),

where

P̂ i
1l = E[e

−
∫ tl
0 rudu−Λi

tl−1 ]

and

P̂ i
2l = E[e−

∫ tl
0 rudu−Λi

tl ].

Therefore, it remains to calculate P̂ i
1l and P̂ i

2l. Again using the “tower property” of conditional expec-
tation yields

P̂ i
1l = E

[
e
−

∫ tl−1
0 rudu−Λi

tl−1E[e
−

∫ tl
tl−1

rvdv|HX
tl
∨Htl−1

]
]

= ⟨e(Q−diag(r))∆tl1, E[e
−

∫ tl−1
0 rudu−Λi

tl−1Xtl−1
]⟩

= ⟨Ψ̂i(0, tl−1)(e
(Q−diag(r))∆tl1), X0⟩,

where the second equality follows from (3.9), and the third equality is a direct consequence of Theorem
3.1.
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The expression for P̂ i
2l can be directly obtained from Theorem 3.1,

P̂ i
2l = ⟨Ψ̂i(0, tl)1, X0⟩.

The discounted payoff of the premium leg is

E[e−
∫ tl
0 rvdu1{τk>tl}] = E[e−

∫ tl
0 rvdvP (τi > tl|Htl)] = P̂ i

2l.

Then substituting the expressions for P̂ i
1l and P̂ i

2l into the discounted payoffs of the premium leg and
the default leg, we end the proof.

4.2. kth-to-default basket swap

A kth-to-default basket swap, which is a commonly traded product of portfolio credit derivatives, is
a bilateral contract between an insurance buyer and an insurance seller. The payment streams of this
derivative depend on the default times of an underlying portfolio ofm credit-risky assets. Assume that
the default dependence structure of the m underlyings is modelled by (2.3). Consider a unit notional
with the maturity T and a constant recovery R. The protection buyer pays an annualized premium
to the protection seller before maturity T at specified time points 0 = t0 < t1 < · · · < tM ≤ T, with
△ti = ti − ti−1. As soon as k assets of the underlying portfolio have defaulted, the insurance buyer
stops further premium payments and the protection seller is committed to paying the insurance buyer
the default compensation 1−R, where R is the constant recovery rate.

Now we will introduce the definition of the kth-to-default time. Denote by

Yt =
m∑
i=1

1{τi>t}

be the number of names which still be alive at time t. Define the kth-to-default time as

τk = inf{t : m− Yt ≥ k} = inf{t : Yt ≤ m− k}.

In particular, the stopping time

τ1 = {t : Yt ≤ m− 1} = min
i
{τi}

is called the first-to-default time.

Then the conditional and unconditional distributions of τk are given by

P (τk ≤ t|Ht) = P (Yt ≤ m− k|Ht)

=
m−k∑
i=0

P (Yt = i|Ht),

and

P (τk ≤ t) = P (Yt ≤ m− k) =
m−k∑
i=0

P (Yt = i).

It is obvious that the distribution of τk depends on the distribution of Yt. From Giesecke (2003), we
have

P (Yt = i|Ht) =
m∑
h=i

(
h
i

)
(−1)h−i

∑
s∈S,|s|=h

P (
∩
j∈s

{τj > t}|Ht)

=
m∑
h=i

(
h
i

)
(−1)h−i

∑
s∈S,|s|=h

e
−

∑
j∈s

Λj
t

,
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where the last equality follows from the conditional independence of the default times.

Furthermore, the distribution of Yt is given by

P (Yt = i) =

m∑
h=i

(
h
i

)
(−1)m−i

∑
s∈S,|s|=h

P (
∩
j∈s

{τj > t})

=
m∑
h=i

(
h
i

)
(−1)h−i

∑
s∈S,|s|=h

⟨Ψs
3(0, t)1, X0⟩,

where Ψs
3(0, t) is given by Corollary 3.2.

Therefore,

P (τk ≤ t|Ht) =
m−k∑
i=0

m∑
h=i

(
h
i

)
(−1)h−i

∑
s∈S,|s|=h

e
−

∑
j∈s

Λj
t

, (4.4)

and,

P (τk ≤ t) =
m−k∑
i=0

m∑
h=i

(
h
i

)
(−1)h−i

∑
s∈S,|s|=h

⟨Ψs
3(0, t)1, X0⟩.

Similarly, the conditional survival distribution of τ1 is,

P (τ1 > t|Ht) = P (τ1 > t, · · · , τm > t|Ht) = e
−

m∑
l=1

Λl
t

.

Furthermore, from Corollary 3.2, it follows that,

P (τ1 > t) = P (τ1 > t, · · · , τm > t) = ⟨Ψ4(0, t)1, X0⟩,

where Ψ4(0, t) is defined in Corollary 3.2.

Next, using the conditional distribution of τk, we will calculate a kth-to-default CDS spread sk. The
cash flows of a kth-to-default CDS are as follows:

Default leg: the protection seller covers the credit losses 1−R as soon as k assets of the underlying
portfolio have defaulted;

Premium leg: the protection buyer pays sk∆ti to the seller, at each date ti, i = 1, · · · ,M until
maturity or until k assets of the underlying portfolio default before maturity.

Then, the kth-to-default CDS spread sk is determined so that the discounted payoff of the two legs
are equal when the contract is settled at the initial time. More precisely, the kth-to-default CDS
spread sk should satisfy

skE[
M∑
l=1

e−
∫ tl
0 rudu△tl1{τk>tl}] = (1−R)E[

M∑
l=1

e−
∫ tl
0 rudu1{tl−1<τk≤tl}].

Hence,

sk =

(1−R)E[
M∑
l=1

e−
∫ tl
0 rudu1{tl−1<τk≤tl}]

E[
M∑
l=1

e−
∫ tl
0 rudu△tl1{τk>tl}]

. (4.5)
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Proposition 4.2 The spread of the kth-to-default CDS, sk, is given by

sk =

M∑
l=1

m∑
i=m−k+1

m∑
h=i

(
h
i

)
(−1)h−i

∑
s∈S,|s|=h

(Phs
1l − Phs

2l )

M∑
l=1

△tl
m∑

i=m−k+1

m∑
h=i

(
h
i

)
(−1)h−i

∑
s∈S,|s|=h

Phs
2l

, (4.6)

where

Phs
1l = ⟨Ψ̃hs(0, tl−1)(e

(Q−diag(r))∆tl1), X0⟩,

and

Phs
2l = ⟨Ψ̃hs(0, tl)1, X0⟩.

Here Ψ̃hs(u, t) is the fundamental matrix solution of

dΨ̃hs(u, t)

du
+ Õhs(u)Ψ̃hs(u, t) = 0, Ψ̃hs(t, t) = I. (4.7)

where Õhs(u) = (õhsij (u)) is an N ×N matrix:

õhsij (u) = qije
−

∑
|s|=h,l∈s

wl
ij

, i ̸= j,

= qii + Ĝ
hsi

u − ri −
∑

|s|=h,l∈s

λli, i = j,

with

Ĝ
hsi

u =
∑

l∈s,|s|=h

µi
l(

∫ ∞

0

eB
l
(u,t)xf li(x)dx− 1) + µi

0(
∏

l∈s,|s|=h

∫ ∞

0

eB
l
(u,t)xf li(x)dx− 1),

and B
l
(u, t) given in Corollary 3.1.

Proof. The proof is similar to the one of Proposition 4.1. We first calculate the discounted payoff.
Using the “tower property” of conditional expectation and (4.4), we have

E[e−
∫ tl
0 rudu1{tl−1<τk≤tl}] = E[e−

∫ tl
0 ruduP (tl−1 < τk ≤ tl|Htl)]

=̂

m∑
i=m−k+1

m∑
h=i

(
h
i

)
(−1)h−i

∑
s∈S,|s|=h

(Phs
1l − Phs

2l ),

where

Phs
1l = E[e

−
∫ tl
0 rudu−

∑
i∈s,|s|=h

Λi
tl−1

]

and

Phs
2l = E[e

−
∫ tl
0 rudu−

∑
i∈s,|s|=h

Λi
tl
].

Therefore, it remains to calculate Phs
1l and Phs

2l . Again using the “tower property” of conditional
expectation yields

Phs
1l = E

[
e
−

∫ tl−1
0 rudu−

∑
i∈s,|s|=h

Λi
tl−1

E[e
−

∫ tl
tl−1

rvdv|HX
tl
∨Htl−1

]
]

= ⟨e(Q−diag(r))∆tl1, E[e
−

∫ tl−1
0 rudu−

∑
i∈s,|s|=h

Λi
tl−1

Xtl−1
]⟩

= ⟨Ψ̃hs(0, tl−1)(e
(Q−diag(r))∆tl1), X0⟩,
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where the second equality follows from (3.9), and the third equality is a direct consequence of Theorem
3.1.

The expression for Phs
2l can be directly obtained from Theorem 3.1,

Phs
2l = ⟨Ψ̃hs(0, tl)1, X0⟩.

The discounted payoff of the premium leg is

E[e−
∫ tl
0 rvdu1{τk>tl}] = E[e−

∫ tl
0 rvdvP (τk > tl|Htl)]

=
m∑

i=m−k+1

m∑
h=i

(
h
i

)
(−1)h−i

∑
s∈S,|s|=h

Phs
2l .

Then substituting the expressions for Phs
1l and Phs

2l into the discounted payoffs of the premium leg
and the default leg, we end the proof.

Then from Proposition 4.2, we can directly obtain the following result.

Corollary 4.1 The spread of the first-to-default CDS, s1, is given by

s1 =

M∑
l=1

(P1l − P2l)

M∑
l=1

△tlP2l

, (4.8)

where

P1l = ⟨Φ(0, tl−1)(e
(Q−diag(r))∆tl1), X0⟩,

and

P2l = ⟨Φ(0, tl)1, X0⟩.

Here Φ(u, t) is the fundamental matrix solution of

dΦ(u, t)

du
+ Ô(u)Φ(u, t) = 0,Φ(t, t) = I. (4.9)

where Ô(u) = (ôij(u)) is an N ×N matrix:

ôij(u) = qije
−

m∑
l=1

wl
ij

, i ̸= j,

= qii + Ĝi
u − ri −

m∑
l=1

λli, i = j,

with Ĝi
u defined in (3.15).

5. Numerical results

In this section, we carry out a numerical study to examine the impact of some model parameters on
the spreads of the CDS.

For the simplicity of computation, we consider a single-name CDS and the first-to-default spread
of a homogenous portfolio of m = 10 credit-risky assets. We set △tl =

1
4 . Following Giesecke et al.
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(2011), we consider N = 3; that is, X has three states, where state e1, state e2, and state e3 represent
a “good” economy, a “moderate” economy, and a “bad” economy, respectively. Also, the generator of
the Markov chain can be borrowed from Giesecke et al. (2011). We set

Q =

 −0.10474 0.08865 0.01609
0.84799 −0.848 0.00001
0.69561 0.00001 −0.69562


As is reported in Giesecke et al. (2011), we set λ1 = (0.00741, 0.004261, 0.11137)∗. Generally speaking,
the main features of the financial market in a “bad (“good) economy are high (low) default probability
and low (high) interest rate. Hence, we set r = (0.05, 0.03, 0.01)∗, µ1 = µ0 = (1, 3, 5)∗, and f1

t is
given by

f11(x) = 2000e−2000x, x > 0; f12(x) = 1000e−1000x, x > 0; f13(x) = 500e−500x, x > 0.

Let w12 = −w21 = w23 = −w32 = w,w13 = −w31 = 2w. In order to investigate the impact of the
jumps of the Markov chain on the spread, we shall study the relationship between the spread and the
parameter w. We also study how the exponential decay rate a impacts the spread.

Figure 1 plots the term structure of the spread s1 for w = 0.01 and w = 0, respectively. We can see
from it that the spread s1 for w = 0.01 is larger than the one for w = 0 when we start at a “good”
economy. This is because when a “good” economy switches to a “moderate” or a “bad” economy, the
hazard process corresponding to w = 0.01 will increase by a positive amount, which leads to a larger
default probability and therefore a larger spread. On the contrary, if we start at a “moderate” or a
“bad” economy, the spread s1 for w = 0.01 is smaller than the one for w = 0, since a transition from a
“moderate” or a “bad” economy to a “good” economy will cause the hazard process corresponding to
case of w = 0.01 to jump downward by a positive amount, which implies a smaller default probability
and therefore a lower spread. We can also see that the difference between the spreads is very small
when we start at a “good” economy, while it is very large when we start at a “moderate” or a “bad”
economy. As is pointed out by Giesecke et al. (2011), the regime e1 is very persistent and the other
two regimes are much less persistent. Therefore, if we start at e1, then the probability of migrating
to e2 or e3 is very small, while if we start at e2 or e3, then the probability of migrating to e1 is very
large.
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Figure 1: Relationship between s1 and
t, for a = 1
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Figure 2: Relationship between s1 and
w with a = 1, T = 10.

Figure 2 presents the relationship between s1 and w for a fixed maturity T = 10. From it we can
see the spread s1 decreases with w when we start from X0 = e2 or X0 = e3. This is because from
the generator of the Markov chain, we can conclude that if we start from X0 = e2, (X0 = e3) then
the probability of switching to e1 is much larger than the probability of switching to e3(e2) or staying
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Figure 3: Relationship between s1 and
a with w = 0.01, T = 10.
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Figure 4: Relationship between s1 and
w with q = 0.5, T = 5.
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Figure 5: Relationship between s1 and
w with q = 0.5, T = 5.
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e2(e3). Therefore, a larger value of w will cause an increasing number of downward jumps in the
hazard process, and therefore a smaller value of the hazard process. We can also see that although s1
increases with w when we start from X0 = e1, it does not change much. This is because the regime
e1 is very persistent and then the probability of switching to the other two regimes is very small.

Figure 3 illustrates the relationship between the spread s1 and a for a fixed maturity T = 10. We
can observe that s1 decreases with a. This is because a larger decay rate a implies a shorter time
period needed to go back to the previous level of λi

t immediately after shock events occur. That is to
say the value of λi

t decreases with a, which leads to a smaller value of hazard process and a smaller
spread.

Figure 4 plots the term structure of the spread s1 for w = 0.01 and w = 0, respectively. Figures
5-6 present the impacts of the parameters w and a on the first-to-default basket swap spread. From
them, we can see that the curves are similar to those of Figures 1-3, and the first-to-default basket
swap spread is much higher than the spread for a single CDS s1, which is consistent with the the
stylized features and the financial intuition. The above numerical results illustrate that if we ignore
the jumps driven by the transition between regimes in the hazard process, we may underprice the
credit derivatives in a “good” economy and overprice them in a “moderate” or a “bad” economy.
Especially, when we start at a “moderate” or a “bad” economy, the prices of the credit derivatives
will be seriously overpriced.

6. Concluding remarks

In this paper, we use a conditionally independent approach to analyze a single-name CDS contract
and a kth-to-default basket swap. Our study contributes to the credit risk literature by by providing
a correlated default model that incorporates both macroeconomic risks and firm-specific jump risks.
The hazard processes are modelled by some regime-switching pure jump processes, in which not only
the model parameters may switch but also the hazard processes may jump whenever transitions in
the Markov chain occur. A key feature of our regime-switching model is that the defaults can be
triggered by the jumps of the Markov chain. Furthermore, if the Markov chain jumps from a state of
economic growth to a state of recession, this may lead the conditional default intensity of all the firms
to go up, increasing the chances of observing a larger number of defaults in the portfolio. Therefore,
the proposed hazard processes can well capture the clustering phenomena in correlated defaults.

The default dependence structure we construct stems from three sources. First, the hazard processes
of the two firms are both affected by a Markov chain, which describes the impact of the market
regimes on the the default probability. Second, default dependence arises from common jumps in the
processes λi

t modelled by a regime-switching compound Poisson process, which models the impact
of some common factors other than market regimes on the default probability. Finally, dependent
structure arises from conditional independence. We give the joint Laplace transform of the hazard
processes via a martingale method. Based on the Laplace transform, we can calculate the CDS spread
and the kth-to-default basket swap spread. Numerical results illustrate that ignoring the jumps driven
by the regime switches will lead to underpricing or overpricing the credit derivatives.

Since the model is still numerically tractable and the number of parameters of the model is flexible,
it will be suitable for many applications in the field of risk management and actuarial applications.
See for example, we can consider a dependent mortality structure by using a similar regime-switching
model. An interesting open problem is the estimation of the model from market data.
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